

Electrostatic sensor basics

- High, narrow field pattern
 - Up to 2.44 m (8 ft.) high and 1 m (3.3 ft.) wide for a 4-wire system
 - Up to 3 m (9.8 ft.) for a 5-wire configuration
- Well contained volumetric detection area
- Terrain-following
- Detects intruders that pass through and disturb the field
- Xfield is Senstar's 3rd generation of electrostatic sensor

Deployment configurations

- Free standing
 - Detection wires are mounted away from free-standing posts, creating a standalone detection structure

Deployment configurations (con't)

- Fence-mounted
 - Detection wire are mounted away from fence posts, creating a barrier / detector

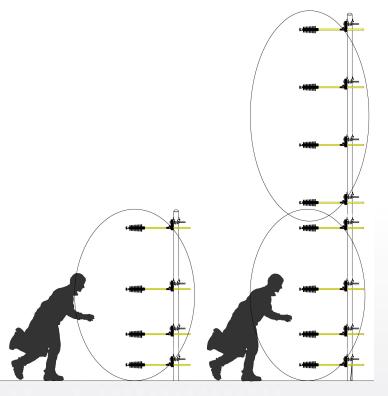
Applications

- Government regulated security specifications (i.e., Nuclear Power and Research)
- High, volumetric detection pattern required by specifications

Applications (con't)

- Industrial complexes
 - Limited space available
- Wall and building edge applications
 - Where aesthetics are NOT a factor

Applications (con't)

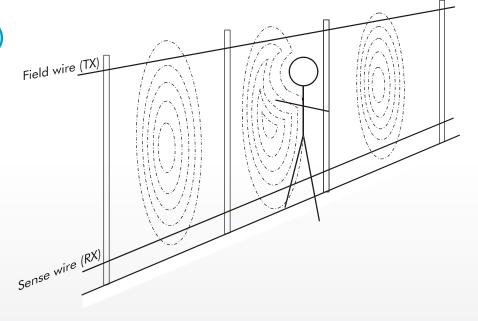

 Whenever volumetric detection is needed in a space restricted area

4-wire, 5-wire & 8-wire deployment

 A second 4-wire system can increase field height to 5.65 m (18.5 ft.)

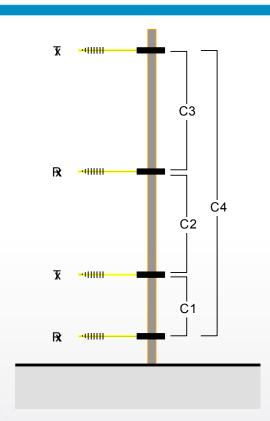
Simplified explanation

- XField detects changes in capacitance
 - For given frequency and capacitor dimensions, the resulting signal depends on the material between the plates (the dielectric material)
 - Place different dielectric material between the capacitor plates and the signal level changes
 - Problem how to make the capacitor large enough to fit a human body between the plates!


Simplified explanation (con't)

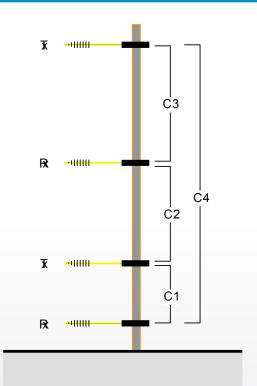
- XField detects changes in capacitance
 - To detect people, we stretch the capacitor's plates out using long lengths of steel wire
 - To human body moving between the wires displaces the air and creates a small change in the dielectric constant and hence in the capacitance
 - The result a small measurable change in the resulting voltage as measured back at the processor, whenever a human target passes the wires

Simplified explanation (con't)


 A human intruder changing the capacitance coupling between a field wire and a sense wire

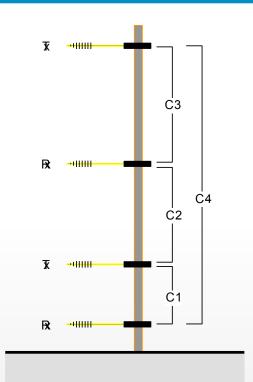
Multi-wire processing

- Moving objects between the wires changes the capacitive coupling between Tx and Rx wires
- Advanced processing allows for 4 capacitance values to be measured simultaneously and used in determining an intrusion



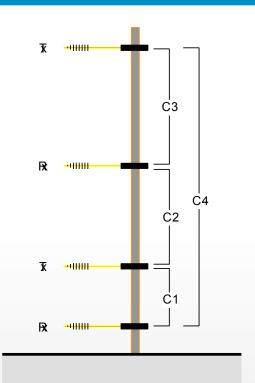
Multi-wire processing (con't)

- XField looks at each of the 4 capacitance values to determine movement using:
 - Amplitude change (mass of intruder)
 - Rate of change (movement of intruder)
 - Duration of disturbance (time the intruder is in the field)


.....

Detection signal measurements

- The 4 capacitance values are continuously sampled to see if the measurements are within a detection window indicating a valid intrusion
- 4 separate sets of measurement windows exist; 1 for each intrusion profile



Detection signal measurements (con't)

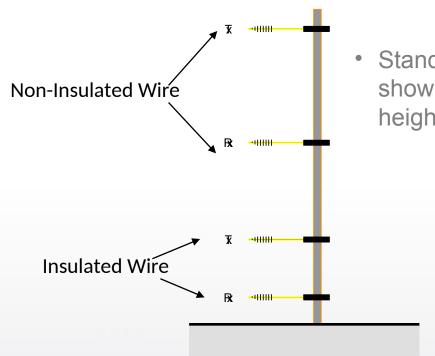
- 4 separate sets of measurement windows exist; 1 for each intrusion profile
 - Profile 1 crawl under
 - Profile 2 crouch through
 - Profile 3 walk through
 - Profile 4 bridge through
- An alarm is created if there is a match in 1 or more detection profiles

000000

Sensor wire supervision

- A method is needed to detect tampering or accidental cutting of the wires
- A resistor is added at the end between the Tx and Rx wires to provide a constant "resistive coupled" signal, which can be easily distinguished from the signal resulting from the capacitive coupling
- Broken (open circuit), or shorted sensor wires are reported as "Supervision" alarms

Fence vs free-standing height (standard deployment)


XField free-standing four-wire separations		
Wire	From Ground	
Top field wire	200 cm (6.6 ft.)	
Upper sense wire	120 cm (3.9 ft.)	
Lower field wire	60 cm (2.0 ft.)	
Bottom sense wire	20 cm (0.7 ft.)	

XField fence-mounted four-wire separations	
Wire	From Ground
Top field wire	245 cm (8.0 ft.)
Upper sense wire	145 cm (4.8 ft.)
Lower field wire	70 cm (2.3 ft.)
Bottom sense wire	20 cm (0.7 ft.)

.....

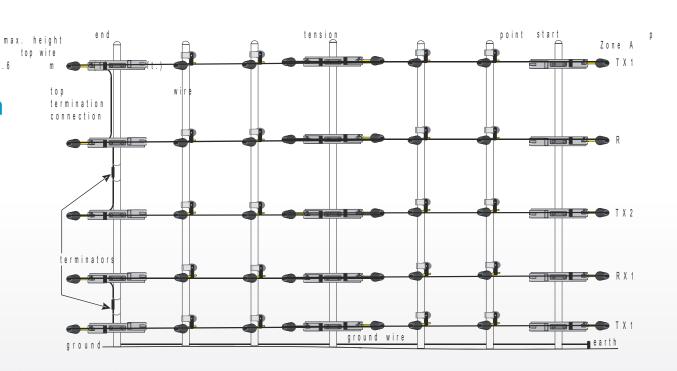
Fence vs freestanding height (standard deployment)

 Standard deployments shown are maximum height values

8-wire spacing (standard deployment)

XField free-standing eight-wire separations		
Wire	From Ground	
Top field wire B	460 cm (15.1 ft.)	
Upper sense wire B	380 cm (12.5 ft.)	
Lower field wire B	300 cm (9.8 ft.)	
Bottom sense wire B	220 cm (7.2 ft.)	
Top field wire A	200 cm (6.6 ft.)	
Upper sense wire A	120 cm (3.9 ft.)	
Lower field wire A	60 cm (2.0 ft.)	
Bottom sense wire A	20 cm (0.7 ft.)	

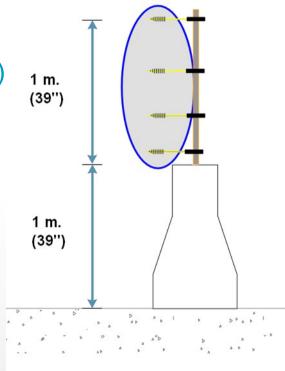
8-wire spacing (standard deployment)


 The 2 lower wires are insulated, all others are non-insulated

•••••

5-wire configuration

....

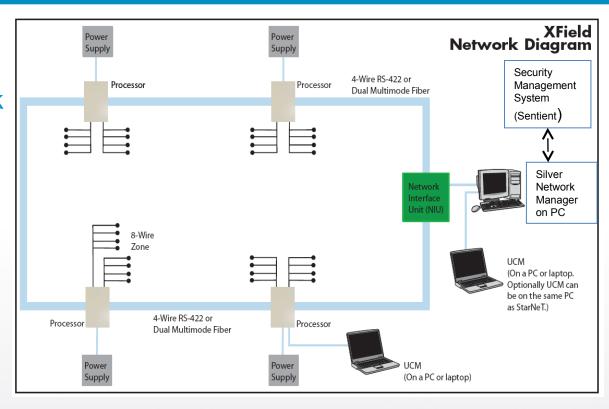

Free-standing minimum height

- Roof-top or barrier applications
- An Excel calculator is available for other heights

Xfield free-standing four-wire separations		
Wire	From Ground	
Top field wire	100 cm (39.5 in.)	
Upper sense wire	64 cm (25.5 in.)	
Lower field wire	38 cm (15 in.)	
Bottom sense wire	20 cm (8 in.)	

Free-standing minimum height (con't)

•••••


 Specified Pd performance is based on passing completely through the wires

	Specifications
Minimum detection mass	35 kg (77 lbs.)
Maximum non-detection mass	10 kg (22 lbs.), provided there is no contact with any wire
Maximum zone length	150 m (500 ft.) two zones per processor
Minimum detection velocity	Adjustable down to 5.0 cm / sec (2 in. / sec)
Maximum detection velocity	Up to 8 m / sec (26 ft. / sec)
Maximum field width from the plane of the wires	Adjustable up to 0.5 m (19 in.)

.....

Network

Hardware

- Totally new insulator hardware
 - Common insulator assembly for the entire perimeter
 - Self-cleaning insulators free of insects
 - Simplified wire tensioning procedure
 - More rugged mechanical design
- New 316 stainless steel sensor wire
- New simplified spacing at the start and at the end of the zone
 - Simple resistor terminator
 - Factory assembled lead-in cable 8 m (26 ft.) long

Hardware (con't)

- New simplified connection to the processor
 - The isolation transformer (sense filter) has been eliminated
 - Simple Phoenix terminals on the processor card for power and data
 - BNC coaxial connectors for the field and sense wires
- All inputs and outputs have lightning protection
- All aluminum enclosure

Electronics

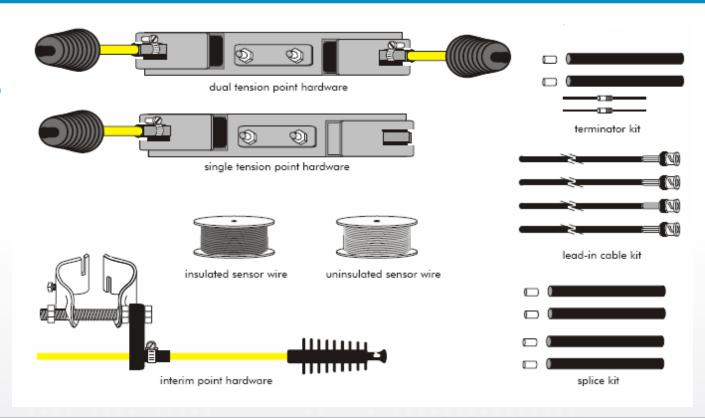
- New more powerful Digital Signal Processor (DSP) uses a single Field Programmable Gate Array (FPGA) and high speed Analog to Digital Converter (ADC) technology
 - Direct-to-digital front-end
 - Part of a whole new family of perimeter security products
 - More stable performance over the long term

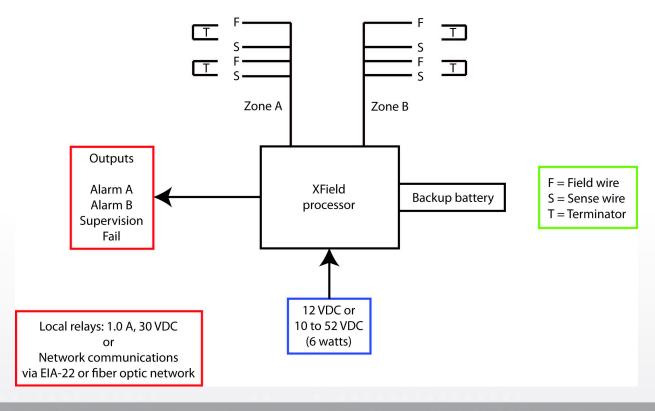
Electronics (con't)

- New full independent monitoring of each sense wire
 - Minimizes environmental effects
 - Distinguishes between faulty insulators and intruders
- New lower field voltage and frequency
 - Four operating frequencies (8000, 8320, 8640 and 8960) notch filters at both 50 Hz and 60 Hz to reject power line pickup
- New local and remote maintenance using the UCM software

Insulator improvements

Old method


New method


.....

"Wet-end" parts

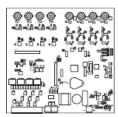
Block diagram

Processor

Processor (con't)

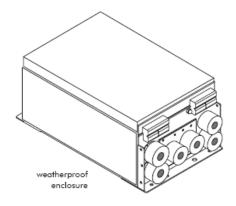
- The enclosure is rated to NEMA 4 and does not need any further weather protection
- Will fit into a new wider Telecom enclosure:
 - To increase covertness
 - To provide additional heat shielding and weather protection

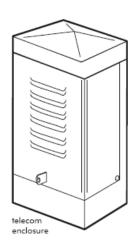
With cover opened



Detail of the cable feed-through on the bottom of the enclosure

Processor parts


Each processor has all
4 operating frequencies
available



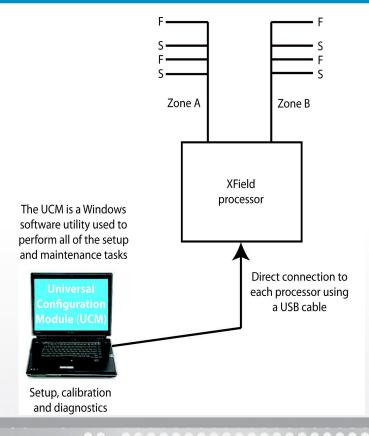
XField processor

network interface card (EIA-422)

Frequency	Operating Frequency
frequency 1	8.000 kHz
frequency 2	8.320 kHz
frequency 3	8.640 kHz
frequency 4	8.960 kHz

Alarm outputs

- Relay outputs are Form C, rated at 30 VDC, 1.0 A maximum, non-inductive load
- There are 4 output relays per processor:
 - 2 alarm relays (one per zone)
 - 1 supervision relay
 - 1 fail relay



Alarm outputs (con't)

- Alternatively, the processor can be configured for networking over the Senstar Silver Network
 - All alarms are reported over the network
 - All parameters can be set and adjusted for each processor from the UCM connected to the processor, or via the Network Manager
 - An option card (EIA-422 or fiber optic) is required on all processors
- New local and remote maintenance using the UCM software

Setup and calibration

UCM software

- A Windows[®] based software utility
 - Laptop or desk top PC
 - USB direct connection to the sensor processor or via LAN to the Network Manager
- System setup and configuration
 - Sensitivity profile recording
 - Cable segmentation and zoning
 - Detection threshold setting
 - Relay output assignments
 - Aux I/O conditioning

UCM software (con't)

- Maintenance and diagnostic tools
 - Real-time monitoring of sensor performance
 - Detection signal plot recorder
 - Seasonal adjustment of sensitivity profile
 - Pinpoint cause of nuisance alarms

Alarm outputs (con't)

- Alternatively, the processor can be configured for networking over the Senstar Silver Network
 - All alarms are reported over the network
 - All parameters can be set and adjusted for each processor from the UCM connected to the processor, or via the Network Manager
 - An option card (EIA-422 or fiber optic) is required on all processors
- New local and remote maintenance using the UCM software

